We present new version of software in the line of LIRA family products LIRA-SAPR 2014. New version is now at the last stages of development and testing. Commersial version of LIRA-SAPR 2014 will be presented on March 25, 2014.

February 10, 2014

We present new version of software in the line of LIRA family products LIRA-SAPR 2014. New version is now at the last stages of development and testing. Commersial version of LIRA-SAPR 2014 will be presented on March 25, 2014.

New features and options in LIRA-SAPR 2014


  • Structural blocks (StB)

    Structural blocks are taken to mean arbitrary fragments of the structure, such as columns, beams, walls, slabs, frames, storeys, etc. With these blocks and their names / labels, it is much easier now to find, select and fragment separate elements of buildings and structures on design model.

    The whole structure may be divided into structural blocks or separate finite elements may be grouped to appropriate structural blocks. Both these procedures are carried out automatically. In this case, the program applies integrated algorithms that examine location of separate objects and their geometry. It is also possible to define structural blocks manually.

    Different parameters such as 'type of structural block' (StB type), 'storey', 'label', 'comments', 'colour' for presentation on model, 'stiffness', 'materials', etc. will simplify the work with structural blocks. These parameters may be modified. In the mode of analysis results, you could visualize displacements of the block, e.g. relative deflection of certain slab.

    Structural blocks are most helpful in unification procedure. For example, if it is necessary to unify several floor slabs or bearing walls, then you could automatically generate required number of unification groups from appropriate finite elements (by number of FE in slab or wall) and generate unified structural block.

    This option will be enhanced as user feedback is obtained.

    Structural blocks

  • Visualization of nonlinear analysis

    Updated algorithm based on step-type methods is realized for analysis of problems with physically nonlinear materials and problems with account of creep. Options for output data are enhanced. In addition to traditional data about nonlinear displacements and forces, it is possible to output data about width and depth of crack propagation in bar and plate elements. This data is presented as mosaic and colour plots. You could also review and prepare documents with output data not only for the last but for any intermediate step of the specified nonlinear history of load cases.

    Visualization of nonlinear analysis

    When generating force diagrams for bar systems, local load is considered.

  • Loads on fragment

    Enhanced options for analysis of loads on fragment. For super-element problems it is possible to obtain loads on fragment not only at super-nodes of the main model but at specified internal nodes of super-elements as well.

  • Force diagrams for bars: options to calculate and visualize on design model.

  • Option to calculate deflections for arbitrary fragment of a model relative to the node with zero deflection.

  • New option to select elements with crossing window, that is, to select objects within and crossing an area defined by two points.

  • New options in Ribbon User Interface

    New styles for Ribbon User Interface are presented: Ribbon RC, Ribbon Steel, Ribbon Plus.

    With Ribbon RC and Ribbon Steel styles, the user could obtain quick access to special tools for the detailed evaluation of analysis results in appropriate program modes.

    The Help system contains a guide for composing Ribbon Interface in User-defined style.

    New toolbar View that simplifies the work with design model.

    New options in Ribbon User Interface


    New procedures to determine parameters of stress strain state in sections of nonlinear bar and plate elements. These procedures have made it possible to avoid numerous alogisms and imperfections that appeared in some cases in previous versions of LIRA program, including LIRA version 9.6. Such imperfections contained: fracture of structure at first steps of load application, increase of forces in elements that are already destroyed; considerable difference in output data obtained from dependencies σ-ε defined analytically (for example, by exponent) and with piecewise linear functions.

    Output data may be displayed for every step of load application. When generating force diagrams for nonlinear bars, local load is considered.

    Creep theory presented in Eurocode is realized completely creep value depends not only on time but on stress as well.


    Eurocode 2 EN 1992-1-1:2004 with account of regional application for Republic of Kazakhstan CH PK EN 1992-1-1:2004/2011 is supported.

    METEOR (Method of unified complete result)

    Enhanced options for MODEL VARIATION system

    New system that enables the user to merge problems with the same topology nodal coordinates, FE model, geometry of sections. Problems may differ in load cases, stiffness and boundary conditions.

    METEOR system (merging problems with the same topology)

    The merged problem will contain topology, stiffness, design options of the basic problem and analysis results of all problems. For such merged problem the user will define and calculate unified complete DCF. Design procedure is carried out according to these DCF by specified design options.

    For example, you generate FE design model that is common for all problems.
    1st problem analysis on dead and live loads.
    2nd problem analysis on earthquake and widn loads with modified parameters of soil (subgrade moduli C1 and C2).
    3rd problem analysis on predefined displacements (undermining, settlements).
    Then you merge these problems and generate one (merged) problem to obtain unified DCF for these three problems.

    Previous system MODEL VARIATION is a special case of new METEOR system.


    Truss joints of pipe elements

    Analysis of parametric truss joints of pipe (circle section) elements 9 basic joints and 6 variations. Layout for adjoining elements is available, weld length is calculated. Analysis is carried out according to SP 16.13330.2011.

    Output data is presented as report file with utilization ratio for bearing capacity of every element included into joint. This gives an accurate account of element behaviour and enables the user to design the joint in the optimal way. Tracing routine for analysis precedure may be presented.

    Truss joints of pipe elements


    New option Corrosion. For sections of steel elements it is possible to define depth of corrosion in mm. In this case, new geometric properties are computed with account of thinning from corrosion. There properties will be applied for static analysis and for check procedure in the mode of analysis of steel structures (STC-SAPR).

    Design of RC structures

    In addition to SLAB and DIAPHRAGM systems presented in Design of RC structures earlier, new system COLUMN is introduced.

    The user could unify columns according to reinforcement data imported from LIRA-SAPR. The column is reinforced automatically.

    Reinforcement in column (drawing in pdf)

    The user could also obtain working drawings for column reinforcement, specifications of reinforcement, lists of components and identification (marking) plan of columns and walls with specification of RC elements.

    Reinforcement in column

    3D reinforcement


    Boundary conditions
    At places where floor slabs are supported with walls, it is possible to define support lines (direct, polygonal, curved) and boundary conditions (hinge, hinge with eccentricity, free). According to this data, appropriate modifications (throwing apart nodes, inserting PRB, coupled DOF, etc.) will be automatically done in FE model.

    Structural blocks (StB) that contain data about StB type (wall, column, beam, slab), storey where the StB is located, StB label, stiffness properties, as well as colour and comments may be exported to VISOR-SAPR module.

    Imported IFC models may be modified in semi-automatic mode. New options that enable the user to transform objects Other (in SAPFIR terminology) into structural elements (beams, columns, slabs, walls) and options to assign type of analytical model (bar, plate, shell) to such objects.

    New options for import of IFC model generated in ArchiCAD: interpretation of object (bearing element, load) is considered in import procedure, improved identification of floor slab openings generated with nonstandard tools.

    Shape creation mode that enables the user to generate framework of the structure by existing 3D-shapes (prism, surface of revolution, cone, sphere, etc.). 3D-shapes are automatically divided into storeys with optional generation of slabs and columns.

  • Back to the list